Culturing Layer-Specific Neocortical Neurons as a Cell Replacement Therapy Following Traumatic Brain Injury

نویسندگان

  • Nathan Peter Cramer
  • Mitali Chatterjee
  • Fritz Walter Lischka
  • Sharon L. Juliano
چکیده

Neurophysiological changes resulting from traumatic brain injury (TBI) can result in adverse changes in behavior including mood instability and cognitive dysfunction. Cell death following TBI likely contributes to these altered behaviors and remains an elusive but attractive target for therapies aiming at functional recovery. Previously we demonstrated that neural progenitor cells derived from embryonic rats can be transplanted into donor neonatal rat brain slices and, over the course of 2 weeks in culture, mature into neurons that express neuronal immunohistochemical markers and develop electrophysiological profiles consistent with excitatory and inhibitory interneurons. Here we examine the potential of generating electrophysiologically mature neurons with a layer-specific phenotype as a next step in developing a therapy designed to rebuild a damaged cortical column with the functionally appropriate neuronal subtypes. Preliminary results suggest that neurons derived from passaged neurospheres and grown in dissociated cell culture develop GABAergic and presumed glutamatergic phenotypes and that the percentage of GABAergic cells increases as a function of passage. After 2 weeks in culture, the neurons have a mix of immature and mature neuronal electrophysiological profiles and receive synaptic inputs from surrounding neurons. Subsets of cells expressing neuron specific markers also express layer-specific markers such as Cux1, ER81, and RORβ. Future studies will investigate the potential of transplanting layer-specific neurons generated and isolated in vitro into the neocortex of neonatal brain slices and their potential to maintain their phenotype and integrate into the host tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

Cell Therapy for Traumatic Brain Injury: Opportunities and Pitfalls

Today, stem cell transplantation is a hot topic in scientific circles as a novel therapeutic approach to repair the structure and function of central nervous system. The safe and neuroprotective effects of cell therapy in models and traumatic brain injury patients were evaluated in many experimental and clinical studies in recent decade and somewhat promising results were provided to the scient...

متن کامل

Dopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy

Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...

متن کامل

P 112: Combining Granulocyte-Colony Stimulating Factor (G-CSF) and Stem Cells in Treatment of Traumatic Brain Injury (TBI)

Traumatic brain injury (TBI) is described as a situation in which the brain is damaged by an external force. It is considered to be a chief problem in health care. Pharmacotherapy and stem cell therapy are the main treatments used in TBI. The purpose of these procedures is to control the inflammation in injured regions of brain. Currently, there is no effective care for TBI that could regenerat...

متن کامل

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013